
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Regex-Based Lexing, Greedy Best-First AST 

Transformation Search, and Dynamic Programming 

Memoization in the Nyunda Interpreter 

Refki Alfarizi - 13523002 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: refkialfarizi46@gmail.com , 13523002@std.stei.itb.ac.id   

 

 
Abstract—To make programming more inclusive for diverse 

communities, this paper details the creation of Nyunda, a scripting 

language that replaces traditional English keywords with 

Sundanese equivalents. Recognizing that interpreted languages 

can suffer from performance overhead, this work investigates a 

multi-stage optimization strategy to mitigate this issue. The 

interpreter's design integrates three complementary algorithmic 

techniques: efficient source code tokenization using modern 

regular-expression engines; pre-execution optimization of the 

Abstract Syntax Tree (AST) via a Greedy Best-First Search 

(GBFS) to eliminate redundant work; and runtime memoization 

based on Dynamic Programming (DP) to reuse the results of 

repeated sub-expressions. Experiments were conducted to validate 

the efficacy of each stage. The results quantitatively demonstrate 

that the GBFS optimizer successfully simplifies the AST, and the 

DP evaluator significantly improves runtime efficiency by 

minimizing re-computations. This confirms that the proposed 

multi-stage approach, combining static and dynamic techniques, 

is an effective strategy for tackling interpreter overhead, 

validating the project as a successful framework for developing 

performant, localized scripting languages. 

Keywords—Nyunda, Interpreter, Regex Lexing, Greedy Best 

First Search, AST Optimization, Dynamic Programming, 

Memoization. 

I.  INTRODUCTION 

As software reaches ever more diverse communities, giving 
developers tools in their own languages can make programming 
feel more natural and inclusive. To this end, Nyunda was created 
as a small, easy-to-use scripting language that swaps out English 
keywords for Sundanese ones, letting speakers of that language 
write code in familiar terms. Because Nyunda runs by 
interpreting code on the fly, it can be slower than a compiled 
program. 

Three complementary techniques show real promise in 
tackling interpreter overhead at different stages of execution. 
First, modern regular-expression engines can tokenize source 
code with concise patterns that recognize keywords, numbers, 
and symbols quickly and reliably. Second, even a simple, local-
rule-driven optimization of the abstract syntax tree (AST), one 
that repeatedly picks the single best inexpensive rewrite, can 
eliminate redundant work before any code runs. And third, 

memoization applied at evaluation time captures and reuses 
results of repeated subexpressions, turning costly loops or 
recursive calls into near-constant-time lookups. 

II. THEORITICAL BASIS 

A. Language Processing Models 

The transformation of source code into an executable format 
is primarily achieved through two models: compilation and 
interpretation. A compiler is a program that translates a source 
language program into an equivalent target language program, 
typically machine code, which is then executed separately [1]. 
In contrast, an interpreter directly executes the operations 
specified in the source program on inputs supplied by the user, 
without first creating a separate executable [1]. Many modern 
systems employ a hybrid approach, compiling source code to an 
intermediate representation (IR) which is then executed by a 
virtual machine, blending the performance of compilation with 
the flexibility of interpretation. 

 
Figure 2.1 Compiler and Interpreter Illustration 

https://www.researchgate.net/figure/nterpretation-vs-
compilation_fig4_334289755 
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B. Lexical Analysis 

Lexical analysis is the first phase of a compiler or interpreter. 
Its primary function is to read the input stream of characters 
constituting the source program and group them into a sequence 
of meaningful units called lexemes. For each lexeme, the lexical 
analyzer produces a token of the form: 

𝑡 = ⟨token-name, attribute-value⟩ (1) 

where token-name is an abstract symbol used by the parser, 
and attribute-value points to an entry in a symbol table for that 
token [1]. This process simplifies the task of the parser by 
abstracting the raw text into a structured format. 

 
Figure 2.2 Lexical Analysis 

https://www.geeksforgeeks.org/compiler-
design/introduction-of-lexical-analysis/ 

C. Regular Expressions (Regex) 

The patterns for identifying tokens during lexical analysis 
are formally defined using Regular Expressions (Regex). 

Regular expression (regex) is a standard notation that 
describes a pattern in the form of a sequence of characters or 
strings. Regexes are used for efficient string matching. Regexes 
are standardized across all tools and programming languages, 
making them important to learn [2]. Given a finite alphabet Σ, a 
regular expression can be formally defined recursively: 

- 𝜖 (the empty string) is a regular expression. 

- For each 𝑎 ∈ Σ, 𝑎 is a regular expression. 

- If 𝑅1 and 𝑅2 are regular expressions, then so are (𝑅1|𝑅2) 

Union (Alternation), (𝑅1𝑅2) Concatenation, and (𝑅1
∗) 

Kleene Star (zero or more repetitions). 

For instance, a token for a numerical literal (`NUMBER`) 
can be defined by the regular expression 𝑑+, which formally 
corresponds to (𝑑𝑑∗) where 𝑑 is a character from the set 
{0, 1, … , 9}. 

D. Syntatic Analysis (Parsing) 

Syntactic analysis, or parsing, takes the flat sequence of 
tokens and verifies its structure against the language's formal 
grammar. Context-free grammar 𝐺 is formally defined as a 4-
tuple 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆), where 𝑉 is a set of non-terminal symbols, 
𝑇 is a set of terminal symbols (the tokens), 𝑃 is a set of 
production rules, and 𝑆 is the start symbol. The parser's main 
task is to construct a parse tree, which is then typically converted 
into an Abstract Syntax Tree. 

A common top-down parsing technique is Recursive 
Descent Parsing, where a set of mutually recursive procedures is 
created, one for each non-terminal symbol in the grammar. The 
parser begins with the top-level rule and recursively calls 
procedures to process nested constructs, effectively 
"descending" through the grammar. 

E. Abstract Syntax Tree (AST) 

An Abstract Syntax Tree (AST) is a condensed, hierarchical 
tree representation of the source code that is derived from the 
parse tree. It abstracts away non-essential syntactic details, such 
as punctuation, focusing solely on the structural and semantic 
content of the code [1]. Each interior node in an AST represents 
an operation, and the children of the node represent the operands 
of that operation. The AST is the primary data structure used for 
subsequent stages of processing, including optimization and 
code generation. 

Formally, a tree is a graph 𝑇 = (𝑁, 𝐸) where 𝑁 is a set of 
nodes and 𝐸 is a set of edges, with no cycles. In an AST, interior 
nodes represent operators or statements, and leaf nodes represent 
operands (e.g., identifiers or literal values). 

 
Figure 2.3 Abstract Syntax Tree Example 

https://ruslanspivak.com/lsbasi-part7/ 

F. Heuristic Search 

When the state space of a problem is too large for exhaustive 
exploration, Heuristic Search algorithms are employed to find 
solutions in a reasonable amount of time. A heuristic is an 
informed guess or a problem-specific rule that guides a search 
algorithm toward a solution. The core of such algorithms is a 
heuristic function, ℎ(𝑛), which estimates the cost from the 
current state 𝑛 to the nearest goal state. While not guaranteed to 
be admissible (i.e., never overestimating the true cost), a well-
designed heuristic can dramatically reduce search complexity. 

G. Greedy Best-First Search (GBFS) 

Greedy best-first search expands the node that appears to be 
closest to goal [3]. It evaluates nodes using only the heuristic 
function. At each step, it selects the node 𝑛 that minimizes ℎ(𝑛):  

𝑓(𝑛)  =  ℎ(𝑛) (2) 

This greedy strategy is often fast but is considered 
"uninformed" by past cost, meaning it can be drawn into dead 
ends or suboptimal paths. It does not guarantee finding the 
shortest or optimal path but is effective for problems where a 
"good enough" solution found quickly is acceptable. 

https://www.geeksforgeeks.org/compiler-design/introduction-of-lexical-analysis/
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Figure 2.4 Greedy Best-First Search Example 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/21-Route-Planning-(2025)-Bagian1.pdf 

H. Dynamic Programming 

Dynamic Programming (DP) is a method of solving 
problems by decomposing the solution into a set of stages [4], 
such that the solution to the problem can be viewed as a series 
of interrelated decisions [4]. It is applicable when a problem 
exhibits two key properties: 

1. Overlapping Subproblems 

The problem can be decomposed into subproblems that are 
solved multiple times. 

2. Optimal Substructure 

The optimal solution to the overall problem can be 
constructed from the optimal solutions of its subproblems. 

DP algorithms store the results of subproblems to avoid re-
computation, typically using a bottom-up (tabulation) or top-
down (memoization) approach. 

I. Memoization 

Memoization is the top-down implementation of Dynamic 
Programming. In this technique, the result of each unique 
subproblem is stored in a lookup table or cache after it is 
computed. Before computing any subproblem, the algorithm 
first checks if the solution is already stored. 

A generalized memoized procedure for a function 
`Compute(x)` on a subproblem `x` can be expressed as: 

function Compute(x): 

    if x in memo_table: 

        return memo_table[x] 

    result = ... // Compute result based on recursive calls to Compute(y) 

    memo_table[x] = result 

    return result 

This is exemplified by the Fibonacci sequence, 𝐹(𝑛) =
𝐹(𝑛 − 1) + 𝐹(𝑛 − 2). A naive recursive approach has 
exponential complexity, 𝑂(2𝑛), whereas a memoized version 
has linear complexity, 𝑂(𝑛), by ensuring each subproblem 𝐹(𝑘) 
is calculated only once. 

III. METHODOLOGY 

The interpreter system is implemented as a multi-stage 
pipeline that transforms raw source code into an executable 
format and ultimately produces an output. The process is divided 
into four primary stages: Lexical Analysis, Syntactic Analysis, 
Heuristic Optimization, and Memoized Evaluation. Each stage 
processes the output of the preceding one, systematically 
refining the representation of the source code before execution. 

 
Figure 3.1 Flowchart of The Proposed Methodology  

Private Documentation 

A. Lexical Analysis 

The initial stage of the pipeline is lexical analysis, which 
converts the raw source code text into a structured sequence of 
tokens. 

1. Input and Processing 

The input to this stage is the raw source code string, 𝑆. The 
lexer scans this string sequentially, applying a prioritized set of 
pre-compiled regular expressions to identify and categorize 
substrings. Each successful match corresponds to a single token. 

2. Optimal Substructure 

The output is a linear sequence of tokens, 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑘), 
where each token 𝑡𝑖 is a tuple containing the token's type, its 
string value (lexeme), and its position in the source file for 
potential error reporting. Formally, a token is represented as: 

𝑡𝑖 = ⟨type, value, line, column⟩ (3) 

    This structured sequence serves as the input for the 
subsequent parsing stage. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
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B. Syntactic Analysis and AST Generation 

This stage validates the grammatical structure of the token 
sequence and builds a hierarchical representation of the code. 

1. Parsing with Recursive Descent 

The input token sequence 𝑇 is processed by a top-down 
Recursive Descent Parser. This parser implements the 
language's context-free grammar through a set of mutually 
recursive functions. The parser begins at the top-level grammar 
rule (e.g., `program`) and recursively descends to parse nested 
constructs (e.g., `statement`, `expression`), ensuring the token 
order conforms to the language's syntax. 

2. Abstract Syntax Tree (AST) Construction 

The primary output of the parser is an Abstract Syntax Tree 
(AST). The AST is a tree graph 𝐺𝐴𝑆𝑇 = (𝑁, 𝐸), where 𝑁 is the 
set of nodes representing operations and constructs, and 𝐸 is the 
set of edges representing their hierarchical relationships. This 
tree is the central data structure used throughout the rest ofthe 
pipeline. 

C. Heuristic AST Optimization 

Before evaluation, the generated AST undergoes an 
optimization phase designed to reduce its computational 
complexity. This is framed as a search problem solved using a 
heuristic algorithm. 

1. Heuristic Cost Model 

A heuristic cost, 𝐶(𝑛), is assigned to every node 𝑛 in the 
AST. The cost function is defined recursively, representing an 
estimate of the computational effort required to evaluate the 
subtree rooted at 𝑛. The total cost of an AST is the cost of its 
root node. The cost is defined as: 

𝐶(𝑛) = 𝐶𝑜𝑝(𝑛) + ∑ 𝐶(𝑐𝑖)

𝑘

𝑖=1

(4) 

where 𝑐𝑖 are the children of node 𝑛, and 𝐶𝑜𝑝(𝑛) is a 

predefined constant representing the intrinsic cost of the 
operation at node 𝑛 (e.g., 𝐶𝑜𝑝(multiplication) >
𝐶𝑜𝑝(addition)). 

2. Greedy Best-First Search Implementation 

The optimization process is modelled as a state-space search, 
where each state is a valid AST. The Greedy Best-First Search 
(GBFS) algorithm is employed to navigate this space. 

- Initial State: The unoptimized AST generated by the parser. 

- Heuristic Function: The heuristic ℎ(𝐴𝑆𝑇) for a given state is 

the total computed cost of its root node, 𝐶(𝐴𝑆𝑇𝑟𝑜𝑜𝑡). 

- Search Process: The algorithm iteratively expands the state 

(AST) with the lowest heuristic cost by applying a set of 

transformation rules to generate successor states. The search 

terminates after a fixed depth to ensure practical 

performance. 

3. Transformation Rules 

The search generates new ASTs by applying a predefined set 
of equivalence transformations, including: 

- Constant Folding: An expression node with constant 

children is replaced by a single node representing the 

computed result. For example, `BinaryOpNode(left:5, op:+, 

right:3)` is replaced by `NumberNode(8)`. 

- Strength Reduction: An operation is replaced by a 

computationally cheaper equivalent. For example, 

`BinaryOpNode(left:x, op:**, right:2)` is transformed into 

`BinaryOpNode(left:x, op:*, right:x)`. 

- Algebraic Simplification: Identity rules are applied to 

eliminate redundant operations, such as 𝑥 +  0 → 𝑥 and 𝑥 ∗
 1 → 𝑥. 

D. Memoized Expression Evaluation 

The final stage involves traversing the optimized AST to 

execute the program's logic and compute results 

1. AST Traversal 

The interpreter walks the AST, typically using a post-order 
traversal (depth-first), executing statements and evaluating 
expressions. 

2. Memoization for Expression Evaluation 

To avoid redundant computations, the evaluation of 

expression nodes is handled using the Memoization technique. 

Memoization key generation done before evaluating an 

expression node 𝑛, a unique key 𝐾 is generated. This key must 

encapsulate both the structure of the expression and the current 

values of any variables it depends on. The key is generated as 

follows: 

𝐾 = hash(repr(𝑛) ⊕ hash(𝑉𝑠)) (5) 

 where repr(𝑛) is a unique string representation of the 
subtree at node 𝑛, and 𝑉𝑠 is a hashable representation of the 
current variable state relevant to the expression. 

 For evaluating the process, the interpreter first checks a 
global cache (`memo_table`) for the key 𝐾. 

- If 𝐾 exists, the cached result is returned immediately, 

preventing re-computation. 

- If 𝐾 does not exist, the expression is evaluated, and the result 

is stored in the cache with key 𝐾 before being returned. This 

ensures that identical subproblems are only solved once, 

which is especially effective for invariant expressions within 

loops. 

IV. IMPLEMENTATION 

The Nyunda interpreter is implemented as a modular, object-
oriented system in Python. The architecture directly models the 
theoretical four-stage pipeline, with distinct classes 
encapsulating the responsibilities of lexical analysis, parsing, 
optimization, and evaluation. This separation of concerns allows 
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for a clean implementation where each component operates on 
the data structures produced by the preceding one. 

The complete source code for this implementation, including 
all classes and algorithms discussed, is available in the project's 
public code repository (see the “Code Repository” section near 
the end of this paper for the link). 

A. Lexical Analysis 

The implementation of the lexical analysis stage is 
encapsulated within the `NyundaLexer` class. The core logic is 
driven by a prioritized list of token specifications, where each 
specification pairs a token type with its corresponding regular 
expression pattern. This list is ordered to ensure longer tokens 
(e.g., `==`) are matched before their shorter counterparts (e.g., 
`=`). For efficiency, these patterns are pre-compiled into regex 
objects upon the lexer's initialization. A key feature of this 
implementation is a dictionary-based mapping that allows the 
lexer to re-classify generic identifiers as specific `KEYWORD` 
tokens, effectively translating the Sundanese-inspired syntax 
into a standardized internal. 

B. Parser and AST 

The `NyundaParser` class and a corresponding hierarchy of 
Abstract Syntax Tree (AST) node classes implement the 
syntactic analysis stage. An abstract base class, `ASTNode`, 
defines a common interface for all nodes, mandating a 
`calculate_cost()` method that is crucial for the optimization 
phase. Each language construct is represented by a dedicated 
class inheriting from `ASTNode`, with Python's `@dataclass` 
decorator used to simplify their definitions. The parser itself 
employs a recursive descent strategy. Methods corresponding to 
grammatical rules, such as `parse_expression`, recursively call 
one another to validate the code's structure. This structure 
implicitly handles operator precedence through the depth of the 
call stack, ensuring the resulting AST accurately reflects 
mathematical and logical hierarchies. 

C. Heuristic Optimizer 

This component, implemented in the 
`GreedyBestFirstOptimizer` class, is designed to reduce the 
computational cost of the tree before execution. The 
optimization process is framed as a heuristic search, managed by 
a min-priority queue implemented with Python's ̀ heapq` library. 
This ensures that the AST configuration with the lowest 
heuristic cost is always selected for expansion, in accordance 
with the Greedy Best-First Search algorithm. Each optimization 
rule, such as constant folding or strength reduction, is 
implemented as a distinct, pure function that transforms a 
matching AST node into a more efficient equivalent. The 
optimizer recursively traverses the tree, attempting to apply 
these transformations to discover a lower-cost configuration.  

D. Memoized Evaluator 

The final execution stage is handled by the 
`NyundaInterpreter` class, which delegates expression 
evaluation to a specialized `DPExpressionEvaluator` class. This 
class implements the memoization strategy using a Python 
dictionary as its cache. To guarantee correctness, a unique key 

is generated for each evaluation context by creating a hashable 
representation of both the expression's structure and the current 
state of its dependent variables. The variable state is made 
hashable by converting the active variable dictionary into a 
`frozenset` of its items. The public-facing evaluation method 
acts as a wrapper that first checks the cache for this key. If the 
key exists, the stored result is returned instantly. Otherwise, the 
expression is computed, its result is stored in the cache, and it is 
then returned. This process ensures that identical expressions 
under identical variable states are only ever computed once. 

V. EXPERIMENT RESULT 

The experiments are designed to quantitatively validate the 
efficacy of the interpreter's two core algorithmic features: the 
Greedy Best-First Search (GBFS) Optimizer and the Dynamic 
Programming (DP) Evaluator. The analysis focuses on 
measuring the performance impact of each feature in isolation 
and in combination, using targeted benchmark scripts. 

Since those stages operate on the Abstract Syntax Tree, their 
successful execution inherently validates the foundational 
correctness of the preceding lexical and syntactic analysis 
stages, which are responsible for creating the tree. 

A. Heuristic AST Optimizer Validation 

This experiment's objective is to demonstrate that the GBFS 
optimizer successfully identifies and applies cost-reducing 
transformations to the Abstract Syntax Tree before execution. 
The following benchmark script, `optimization_test.nyunda`, 
was created with expressions specifically designed for static 
optimization. 

# Test 1: Constant Folding (5 + 10 should become 15) 

a = 5 + 10 

# Test 2: Strength Reduction (b ** 2 should become b * b) 

b = 4 

c = b ** 2 

# Test 3: Algebraic Simplification (d * 1 + 0 should become d) 

d = a + c 

e = d * 1 + 0 

cetak(e) # Should print the final calculated value 

 The script was executed with both the optimizer and 
evaluator enabled. The results of the optimization stage are 
summarized in Table 1. 

TABLE 1 

Results of Heuristic AST Optimization. 

Metric Value 

Initial AST Cost 86 

Transformations 
Applied 

`strength_reduction_pow2`, 
`identity_mul`,`constant_folding`, `identity_add` 

Optimized AST 
Cost 

58 
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The results clearly indicate the effectiveness of the GBFS 
optimizer. The system successfully identified four distinct 
opportunities for optimization, including constant folding, 
strength reduction, and algebraic simplification. The application 
of these transformations resulted in a 32.6% reduction in the 
AST's heuristic cost (from 86 to 58). This demonstrates that the 
static optimization stage successfully simplifies the 
computational work required for the subsequent evaluation 
phase. 

 
Figure 5.1 Screenshot of Heuristic AST Optimization 

Private Documentation 

B. Memoized Evaluator Validation 

This experiment aims to demonstrate that the DP-based 
memoization technique significantly reduces redundant 
computations during runtime. The following benchmark script, 
`dp_test.nyunda`, was designed to contain a repetitive 
calculation within a loop, creating an overlapping subproblem. 

x = 5 

y = 10 

z = 0 

# This loop repeatedly calculates (x * y) 

bari z < 5 { 

  a = (x * y) + z   # (x*y) is the overlapping subproblem 

  cetak(a) 

  z = z + 1 

} 

 The script was executed twice: once with the DP evaluator 
enabled and once with it disabled. The results are shown in Table 
2. 

TABLE 2 

Comparison of Evaluator Performance. 

Execution 
Mode 

Subproblems 
Solved 

Cache Hits Hit Rate 

DP Enabled 61 5 8.20% 

DP Disabled N/A 0 0% 

 

The data provides direct quantitative proof of the 
memoization system's efficacy. In the "DP Enabled" mode, the 
system registered 5 cache hits with an 8.20% hit rate. This 

indicates that after the initial calculation of the invariant sub-
expression `(x * y)`, its result was successfully retrieved from 
the cache in all subsequent loop iterations, avoiding re-
computation. The "DP Disabled" run serves as the control case, 
establishing a baseline where no such runtime optimization 
occurs. The stark contrast between the two runs confirms that 
the DP implementation effectively optimizes runtime 
performance by eliminating redundant calculations. 

 
Figure 5.2 Screenshot of Evaluator Performance 

Private Documentation 

C. Combined Performance Analysis 

This final experiment analyzes the synergistic effect of both 
optimization stages using a more comprehensive factorial script. 
The interpreter was executed four times to cover all 
combinations of the optimizer and evaluator flags.  

cetak("Ngitung faktorial 7...") 

n = 7 

hasil = 1 

counter = 1 

 

bari counter <= n { 

  hasil = hasil * counter 

  counter = counter + 1 

} 

 

cetak("Hasil faktorial tina 7 nyaeta:") 

cetak(hasil) # Kaluaran kedahna 5040 (Output should be 5040) 
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# Conto optimasi 

# Interpreter kedah ngaoptimalkeun 'hasil * 1' janten 'hasil' 

# sareng 'counter + 0' janten 'counter'. 

optimasi = hasil * 1 + 0 

cetak("Hasil saatos optimasi (kedah sami):") 

cetak(optimasi) 

 

TABLE 3 

Comparison of Evaluator Performance. 

Greedy 
Optimizer 

DP 
Evaluator 

Final AST 
Cost 

DP Cache 
Hits 

DP Hit 
Rate 

Enabled Enabled 432 9 13.64% 

Disabled Enabled 445 9 12.86% 

Enabled Disabled 432 0 0.00% 

Disabled Disabled 445 0 0.00% 

 

The results in Table III illustrate the distinct and 
complementary benefits of each algorithmic stage. 

1. Static Optimization Impact 

Comparing rows where the optimizer is enabled versus 
disabled (e.g., row 1 vs. 2), the `Final AST Cost` consistently 
drops from 445 to 432. This demonstrates the static cost 
reduction provided by the GBFS optimizer, regardless of the 
runtime evaluation method. 

2. Runtime Evaluation Impact 

Comparing rows where the evaluator is enabled versus 
disabled (e.g., row 1 vs. 3), the `DP Cache Hits` metric is non-
zero only when the DP system is active. This confirms that the 
memoization system provides a runtime performance benefit by 
caching results, a feature that static optimization alone cannot 
provide. 

The most performant configuration is when both systems are 
enabled, benefiting from both the reduced computational 
complexity of the optimized AST and the runtime efficiency of 
the memoized evaluator. 

VI. CONCLUSION 

This study successfully developed and validated an 
interpreter for a custom, Sundanese-inspired language, centered 
on a multi-stage pipeline that integrates a Greedy Best-First 
Search (GBFS) optimizer with a Dynamic Programming (DP) 
evaluator. By leveraging GBFS for static pre-execution 
optimization and DP for memoized runtime evaluation, the 
system effectively enhances computational efficiency from two 
distinct perspectives. 

The experimental results demonstrate the system's ability to 
significantly improve performance through this dual-strategy 
approach. The heuristic optimizer was shown to successfully 
reduce the Abstract Syntax Tree's computational cost by 32.6% 
in targeted tests, while the memoized evaluator achieved a 

notable cache hit rate, confirming its success in eliminating 
redundant calculations during program execution. The 
combined analysis verified that the most performant 
configuration is achieved when both systems are active, 
highlighting the complementary benefits of static analysis and 
dynamic optimization. 

While the interpreter successfully serves as a proof-of-
concept, future work could focus on expanding the language's 
feature set by implementing more complex data structures and 
user-defined functions, which would necessitate a more 
advanced, scope-aware DP evaluator. Overall, the integration of 
heuristic search and dynamic programming presents a robust and 
effective methodology for advancing the design of modern 
interpreters. 
 

VIDEO LINK AT YOUTUBE 

A detailed walkthrough of the paper is available on 
YouTube. Watch the video here: 
https://youtu.be/fOVk7zWDVoU 

 

CODE REPOSITORY 

The source code for the implementation discussed in this 
paper is available at the following GitHub repository: 
https://github.com/l0stplains/Nyunda 
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