
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Regex-Based Lexing, Greedy Best-First AST

Transformation Search, and Dynamic Programming

Memoization in the Nyunda Interpreter

Refki Alfarizi - 13523002

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: refkialfarizi46@gmail.com , 13523002@std.stei.itb.ac.id

Abstract—To make programming more inclusive for diverse

communities, this paper details the creation of Nyunda, a scripting

language that replaces traditional English keywords with

Sundanese equivalents. Recognizing that interpreted languages

can suffer from performance overhead, this work investigates a

multi-stage optimization strategy to mitigate this issue. The

interpreter's design integrates three complementary algorithmic

techniques: efficient source code tokenization using modern

regular-expression engines; pre-execution optimization of the

Abstract Syntax Tree (AST) via a Greedy Best-First Search

(GBFS) to eliminate redundant work; and runtime memoization

based on Dynamic Programming (DP) to reuse the results of

repeated sub-expressions. Experiments were conducted to validate

the efficacy of each stage. The results quantitatively demonstrate

that the GBFS optimizer successfully simplifies the AST, and the

DP evaluator significantly improves runtime efficiency by

minimizing re-computations. This confirms that the proposed

multi-stage approach, combining static and dynamic techniques,

is an effective strategy for tackling interpreter overhead,

validating the project as a successful framework for developing

performant, localized scripting languages.

Keywords—Nyunda, Interpreter, Regex Lexing, Greedy Best

First Search, AST Optimization, Dynamic Programming,

Memoization.

I. INTRODUCTION

As software reaches ever more diverse communities, giving
developers tools in their own languages can make programming
feel more natural and inclusive. To this end, Nyunda was created
as a small, easy-to-use scripting language that swaps out English
keywords for Sundanese ones, letting speakers of that language
write code in familiar terms. Because Nyunda runs by
interpreting code on the fly, it can be slower than a compiled
program.

Three complementary techniques show real promise in
tackling interpreter overhead at different stages of execution.
First, modern regular-expression engines can tokenize source
code with concise patterns that recognize keywords, numbers,
and symbols quickly and reliably. Second, even a simple, local-
rule-driven optimization of the abstract syntax tree (AST), one
that repeatedly picks the single best inexpensive rewrite, can
eliminate redundant work before any code runs. And third,

memoization applied at evaluation time captures and reuses
results of repeated subexpressions, turning costly loops or
recursive calls into near-constant-time lookups.

II. THEORITICAL BASIS

A. Language Processing Models

The transformation of source code into an executable format
is primarily achieved through two models: compilation and
interpretation. A compiler is a program that translates a source
language program into an equivalent target language program,
typically machine code, which is then executed separately [1].
In contrast, an interpreter directly executes the operations
specified in the source program on inputs supplied by the user,
without first creating a separate executable [1]. Many modern
systems employ a hybrid approach, compiling source code to an
intermediate representation (IR) which is then executed by a
virtual machine, blending the performance of compilation with
the flexibility of interpretation.

Figure 2.1 Compiler and Interpreter Illustration

https://www.researchgate.net/figure/nterpretation-vs-
compilation_fig4_334289755

mailto:refkialfarizi46@gmail.com
mailto:13523002@std.stei.itb.ac.id
https://www.researchgate.net/figure/nterpretation-vs-compilation_fig4_334289755
https://www.researchgate.net/figure/nterpretation-vs-compilation_fig4_334289755

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Lexical Analysis

Lexical analysis is the first phase of a compiler or interpreter.
Its primary function is to read the input stream of characters
constituting the source program and group them into a sequence
of meaningful units called lexemes. For each lexeme, the lexical
analyzer produces a token of the form:

𝑡 = ⟨token-name, attribute-value⟩ (1)

where token-name is an abstract symbol used by the parser,
and attribute-value points to an entry in a symbol table for that
token [1]. This process simplifies the task of the parser by
abstracting the raw text into a structured format.

Figure 2.2 Lexical Analysis

https://www.geeksforgeeks.org/compiler-
design/introduction-of-lexical-analysis/

C. Regular Expressions (Regex)

The patterns for identifying tokens during lexical analysis
are formally defined using Regular Expressions (Regex).

Regular expression (regex) is a standard notation that
describes a pattern in the form of a sequence of characters or
strings. Regexes are used for efficient string matching. Regexes
are standardized across all tools and programming languages,
making them important to learn [2]. Given a finite alphabet Σ, a
regular expression can be formally defined recursively:

- 𝜖 (the empty string) is a regular expression.

- For each 𝑎 ∈ Σ, 𝑎 is a regular expression.

- If 𝑅1 and 𝑅2 are regular expressions, then so are (𝑅1|𝑅2)

Union (Alternation), (𝑅1𝑅2) Concatenation, and (𝑅1
∗)

Kleene Star (zero or more repetitions).

For instance, a token for a numerical literal (`NUMBER`)
can be defined by the regular expression 𝑑+, which formally
corresponds to (𝑑𝑑∗) where 𝑑 is a character from the set
{0, 1, … , 9}.

D. Syntatic Analysis (Parsing)

Syntactic analysis, or parsing, takes the flat sequence of
tokens and verifies its structure against the language's formal
grammar. Context-free grammar 𝐺 is formally defined as a 4-
tuple 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆), where 𝑉 is a set of non-terminal symbols,
𝑇 is a set of terminal symbols (the tokens), 𝑃 is a set of
production rules, and 𝑆 is the start symbol. The parser's main
task is to construct a parse tree, which is then typically converted
into an Abstract Syntax Tree.

A common top-down parsing technique is Recursive
Descent Parsing, where a set of mutually recursive procedures is
created, one for each non-terminal symbol in the grammar. The
parser begins with the top-level rule and recursively calls
procedures to process nested constructs, effectively
"descending" through the grammar.

E. Abstract Syntax Tree (AST)

An Abstract Syntax Tree (AST) is a condensed, hierarchical
tree representation of the source code that is derived from the
parse tree. It abstracts away non-essential syntactic details, such
as punctuation, focusing solely on the structural and semantic
content of the code [1]. Each interior node in an AST represents
an operation, and the children of the node represent the operands
of that operation. The AST is the primary data structure used for
subsequent stages of processing, including optimization and
code generation.

Formally, a tree is a graph 𝑇 = (𝑁, 𝐸) where 𝑁 is a set of
nodes and 𝐸 is a set of edges, with no cycles. In an AST, interior
nodes represent operators or statements, and leaf nodes represent
operands (e.g., identifiers or literal values).

Figure 2.3 Abstract Syntax Tree Example

https://ruslanspivak.com/lsbasi-part7/

F. Heuristic Search

When the state space of a problem is too large for exhaustive
exploration, Heuristic Search algorithms are employed to find
solutions in a reasonable amount of time. A heuristic is an
informed guess or a problem-specific rule that guides a search
algorithm toward a solution. The core of such algorithms is a
heuristic function, ℎ(𝑛), which estimates the cost from the
current state 𝑛 to the nearest goal state. While not guaranteed to
be admissible (i.e., never overestimating the true cost), a well-
designed heuristic can dramatically reduce search complexity.

G. Greedy Best-First Search (GBFS)

Greedy best-first search expands the node that appears to be
closest to goal [3]. It evaluates nodes using only the heuristic
function. At each step, it selects the node 𝑛 that minimizes ℎ(𝑛):

𝑓(𝑛) = ℎ(𝑛) (2)

This greedy strategy is often fast but is considered
"uninformed" by past cost, meaning it can be drawn into dead
ends or suboptimal paths. It does not guarantee finding the
shortest or optimal path but is effective for problems where a
"good enough" solution found quickly is acceptable.

https://www.geeksforgeeks.org/compiler-design/introduction-of-lexical-analysis/
https://www.geeksforgeeks.org/compiler-design/introduction-of-lexical-analysis/
https://ruslanspivak.com/lsbasi-part7/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 2.4 Greedy Best-First Search Example

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/21-Route-Planning-(2025)-Bagian1.pdf

H. Dynamic Programming

Dynamic Programming (DP) is a method of solving
problems by decomposing the solution into a set of stages [4],
such that the solution to the problem can be viewed as a series
of interrelated decisions [4]. It is applicable when a problem
exhibits two key properties:

1. Overlapping Subproblems

The problem can be decomposed into subproblems that are
solved multiple times.

2. Optimal Substructure

The optimal solution to the overall problem can be
constructed from the optimal solutions of its subproblems.

DP algorithms store the results of subproblems to avoid re-
computation, typically using a bottom-up (tabulation) or top-
down (memoization) approach.

I. Memoization

Memoization is the top-down implementation of Dynamic
Programming. In this technique, the result of each unique
subproblem is stored in a lookup table or cache after it is
computed. Before computing any subproblem, the algorithm
first checks if the solution is already stored.

A generalized memoized procedure for a function
`Compute(x)` on a subproblem `x` can be expressed as:

function Compute(x):

 if x in memo_table:

 return memo_table[x]

 result = ... // Compute result based on recursive calls to Compute(y)

 memo_table[x] = result

 return result

This is exemplified by the Fibonacci sequence, 𝐹(𝑛) =
𝐹(𝑛 − 1) + 𝐹(𝑛 − 2). A naive recursive approach has
exponential complexity, 𝑂(2𝑛), whereas a memoized version
has linear complexity, 𝑂(𝑛), by ensuring each subproblem 𝐹(𝑘)
is calculated only once.

III. METHODOLOGY

The interpreter system is implemented as a multi-stage
pipeline that transforms raw source code into an executable
format and ultimately produces an output. The process is divided
into four primary stages: Lexical Analysis, Syntactic Analysis,
Heuristic Optimization, and Memoized Evaluation. Each stage
processes the output of the preceding one, systematically
refining the representation of the source code before execution.

Figure 3.1 Flowchart of The Proposed Methodology

Private Documentation

A. Lexical Analysis

The initial stage of the pipeline is lexical analysis, which
converts the raw source code text into a structured sequence of
tokens.

1. Input and Processing

The input to this stage is the raw source code string, 𝑆. The
lexer scans this string sequentially, applying a prioritized set of
pre-compiled regular expressions to identify and categorize
substrings. Each successful match corresponds to a single token.

2. Optimal Substructure

The output is a linear sequence of tokens, 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑘),
where each token 𝑡𝑖 is a tuple containing the token's type, its
string value (lexeme), and its position in the source file for
potential error reporting. Formally, a token is represented as:

𝑡𝑖 = ⟨type, value, line, column⟩ (3)

 This structured sequence serves as the input for the
subsequent parsing stage.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Syntactic Analysis and AST Generation

This stage validates the grammatical structure of the token
sequence and builds a hierarchical representation of the code.

1. Parsing with Recursive Descent

The input token sequence 𝑇 is processed by a top-down
Recursive Descent Parser. This parser implements the
language's context-free grammar through a set of mutually
recursive functions. The parser begins at the top-level grammar
rule (e.g., `program`) and recursively descends to parse nested
constructs (e.g., `statement`, `expression`), ensuring the token
order conforms to the language's syntax.

2. Abstract Syntax Tree (AST) Construction

The primary output of the parser is an Abstract Syntax Tree
(AST). The AST is a tree graph 𝐺𝐴𝑆𝑇 = (𝑁, 𝐸), where 𝑁 is the
set of nodes representing operations and constructs, and 𝐸 is the
set of edges representing their hierarchical relationships. This
tree is the central data structure used throughout the rest ofthe
pipeline.

C. Heuristic AST Optimization

Before evaluation, the generated AST undergoes an
optimization phase designed to reduce its computational
complexity. This is framed as a search problem solved using a
heuristic algorithm.

1. Heuristic Cost Model

A heuristic cost, 𝐶(𝑛), is assigned to every node 𝑛 in the
AST. The cost function is defined recursively, representing an
estimate of the computational effort required to evaluate the
subtree rooted at 𝑛. The total cost of an AST is the cost of its
root node. The cost is defined as:

𝐶(𝑛) = 𝐶𝑜𝑝(𝑛) + ∑ 𝐶(𝑐𝑖)

𝑘

𝑖=1

(4)

where 𝑐𝑖 are the children of node 𝑛, and 𝐶𝑜𝑝(𝑛) is a

predefined constant representing the intrinsic cost of the
operation at node 𝑛 (e.g., 𝐶𝑜𝑝(multiplication) >
𝐶𝑜𝑝(addition)).

2. Greedy Best-First Search Implementation

The optimization process is modelled as a state-space search,
where each state is a valid AST. The Greedy Best-First Search
(GBFS) algorithm is employed to navigate this space.

- Initial State: The unoptimized AST generated by the parser.

- Heuristic Function: The heuristic ℎ(𝐴𝑆𝑇) for a given state is

the total computed cost of its root node, 𝐶(𝐴𝑆𝑇𝑟𝑜𝑜𝑡).

- Search Process: The algorithm iteratively expands the state

(AST) with the lowest heuristic cost by applying a set of

transformation rules to generate successor states. The search

terminates after a fixed depth to ensure practical

performance.

3. Transformation Rules

The search generates new ASTs by applying a predefined set
of equivalence transformations, including:

- Constant Folding: An expression node with constant

children is replaced by a single node representing the

computed result. For example, `BinaryOpNode(left:5, op:+,

right:3)` is replaced by `NumberNode(8)`.

- Strength Reduction: An operation is replaced by a

computationally cheaper equivalent. For example,

`BinaryOpNode(left:x, op:**, right:2)` is transformed into

`BinaryOpNode(left:x, op:*, right:x)`.

- Algebraic Simplification: Identity rules are applied to

eliminate redundant operations, such as 𝑥 + 0 → 𝑥 and 𝑥 ∗
 1 → 𝑥.

D. Memoized Expression Evaluation

The final stage involves traversing the optimized AST to

execute the program's logic and compute results

1. AST Traversal

The interpreter walks the AST, typically using a post-order
traversal (depth-first), executing statements and evaluating
expressions.

2. Memoization for Expression Evaluation

To avoid redundant computations, the evaluation of

expression nodes is handled using the Memoization technique.

Memoization key generation done before evaluating an

expression node 𝑛, a unique key 𝐾 is generated. This key must

encapsulate both the structure of the expression and the current

values of any variables it depends on. The key is generated as

follows:

𝐾 = hash(repr(𝑛) ⊕ hash(𝑉𝑠)) (5)

 where repr(𝑛) is a unique string representation of the
subtree at node 𝑛, and 𝑉𝑠 is a hashable representation of the
current variable state relevant to the expression.

 For evaluating the process, the interpreter first checks a
global cache (`memo_table`) for the key 𝐾.

- If 𝐾 exists, the cached result is returned immediately,

preventing re-computation.

- If 𝐾 does not exist, the expression is evaluated, and the result

is stored in the cache with key 𝐾 before being returned. This

ensures that identical subproblems are only solved once,

which is especially effective for invariant expressions within

loops.

IV. IMPLEMENTATION

The Nyunda interpreter is implemented as a modular, object-
oriented system in Python. The architecture directly models the
theoretical four-stage pipeline, with distinct classes
encapsulating the responsibilities of lexical analysis, parsing,
optimization, and evaluation. This separation of concerns allows

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

for a clean implementation where each component operates on
the data structures produced by the preceding one.

The complete source code for this implementation, including
all classes and algorithms discussed, is available in the project's
public code repository (see the “Code Repository” section near
the end of this paper for the link).

A. Lexical Analysis

The implementation of the lexical analysis stage is
encapsulated within the `NyundaLexer` class. The core logic is
driven by a prioritized list of token specifications, where each
specification pairs a token type with its corresponding regular
expression pattern. This list is ordered to ensure longer tokens
(e.g., `==`) are matched before their shorter counterparts (e.g.,
`=`). For efficiency, these patterns are pre-compiled into regex
objects upon the lexer's initialization. A key feature of this
implementation is a dictionary-based mapping that allows the
lexer to re-classify generic identifiers as specific `KEYWORD`
tokens, effectively translating the Sundanese-inspired syntax
into a standardized internal.

B. Parser and AST

The `NyundaParser` class and a corresponding hierarchy of
Abstract Syntax Tree (AST) node classes implement the
syntactic analysis stage. An abstract base class, `ASTNode`,
defines a common interface for all nodes, mandating a
`calculate_cost()` method that is crucial for the optimization
phase. Each language construct is represented by a dedicated
class inheriting from `ASTNode`, with Python's `@dataclass`
decorator used to simplify their definitions. The parser itself
employs a recursive descent strategy. Methods corresponding to
grammatical rules, such as `parse_expression`, recursively call
one another to validate the code's structure. This structure
implicitly handles operator precedence through the depth of the
call stack, ensuring the resulting AST accurately reflects
mathematical and logical hierarchies.

C. Heuristic Optimizer

This component, implemented in the
`GreedyBestFirstOptimizer` class, is designed to reduce the
computational cost of the tree before execution. The
optimization process is framed as a heuristic search, managed by
a min-priority queue implemented with Python's ̀ heapq` library.
This ensures that the AST configuration with the lowest
heuristic cost is always selected for expansion, in accordance
with the Greedy Best-First Search algorithm. Each optimization
rule, such as constant folding or strength reduction, is
implemented as a distinct, pure function that transforms a
matching AST node into a more efficient equivalent. The
optimizer recursively traverses the tree, attempting to apply
these transformations to discover a lower-cost configuration.

D. Memoized Evaluator

The final execution stage is handled by the
`NyundaInterpreter` class, which delegates expression
evaluation to a specialized `DPExpressionEvaluator` class. This
class implements the memoization strategy using a Python
dictionary as its cache. To guarantee correctness, a unique key

is generated for each evaluation context by creating a hashable
representation of both the expression's structure and the current
state of its dependent variables. The variable state is made
hashable by converting the active variable dictionary into a
`frozenset` of its items. The public-facing evaluation method
acts as a wrapper that first checks the cache for this key. If the
key exists, the stored result is returned instantly. Otherwise, the
expression is computed, its result is stored in the cache, and it is
then returned. This process ensures that identical expressions
under identical variable states are only ever computed once.

V. EXPERIMENT RESULT

The experiments are designed to quantitatively validate the
efficacy of the interpreter's two core algorithmic features: the
Greedy Best-First Search (GBFS) Optimizer and the Dynamic
Programming (DP) Evaluator. The analysis focuses on
measuring the performance impact of each feature in isolation
and in combination, using targeted benchmark scripts.

Since those stages operate on the Abstract Syntax Tree, their
successful execution inherently validates the foundational
correctness of the preceding lexical and syntactic analysis
stages, which are responsible for creating the tree.

A. Heuristic AST Optimizer Validation

This experiment's objective is to demonstrate that the GBFS
optimizer successfully identifies and applies cost-reducing
transformations to the Abstract Syntax Tree before execution.
The following benchmark script, `optimization_test.nyunda`,
was created with expressions specifically designed for static
optimization.

Test 1: Constant Folding (5 + 10 should become 15)

a = 5 + 10

Test 2: Strength Reduction (b ** 2 should become b * b)

b = 4

c = b ** 2

Test 3: Algebraic Simplification (d * 1 + 0 should become d)

d = a + c

e = d * 1 + 0

cetak(e) # Should print the final calculated value

 The script was executed with both the optimizer and
evaluator enabled. The results of the optimization stage are
summarized in Table 1.

TABLE 1

Results of Heuristic AST Optimization.

Metric Value

Initial AST Cost 86

Transformations
Applied

`strength_reduction_pow2`,
`identity_mul`,`constant_folding`, `identity_add`

Optimized AST
Cost

58

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The results clearly indicate the effectiveness of the GBFS
optimizer. The system successfully identified four distinct
opportunities for optimization, including constant folding,
strength reduction, and algebraic simplification. The application
of these transformations resulted in a 32.6% reduction in the
AST's heuristic cost (from 86 to 58). This demonstrates that the
static optimization stage successfully simplifies the
computational work required for the subsequent evaluation
phase.

Figure 5.1 Screenshot of Heuristic AST Optimization

Private Documentation

B. Memoized Evaluator Validation

This experiment aims to demonstrate that the DP-based
memoization technique significantly reduces redundant
computations during runtime. The following benchmark script,
`dp_test.nyunda`, was designed to contain a repetitive
calculation within a loop, creating an overlapping subproblem.

x = 5

y = 10

z = 0

This loop repeatedly calculates (x * y)

bari z < 5 {

 a = (x * y) + z # (x*y) is the overlapping subproblem

 cetak(a)

 z = z + 1

}

 The script was executed twice: once with the DP evaluator
enabled and once with it disabled. The results are shown in Table
2.

TABLE 2

Comparison of Evaluator Performance.

Execution
Mode

Subproblems
Solved

Cache Hits Hit Rate

DP Enabled 61 5 8.20%

DP Disabled N/A 0 0%

The data provides direct quantitative proof of the
memoization system's efficacy. In the "DP Enabled" mode, the
system registered 5 cache hits with an 8.20% hit rate. This

indicates that after the initial calculation of the invariant sub-
expression `(x * y)`, its result was successfully retrieved from
the cache in all subsequent loop iterations, avoiding re-
computation. The "DP Disabled" run serves as the control case,
establishing a baseline where no such runtime optimization
occurs. The stark contrast between the two runs confirms that
the DP implementation effectively optimizes runtime
performance by eliminating redundant calculations.

Figure 5.2 Screenshot of Evaluator Performance

Private Documentation

C. Combined Performance Analysis

This final experiment analyzes the synergistic effect of both
optimization stages using a more comprehensive factorial script.
The interpreter was executed four times to cover all
combinations of the optimizer and evaluator flags.

cetak("Ngitung faktorial 7...")

n = 7

hasil = 1

counter = 1

bari counter <= n {

 hasil = hasil * counter

 counter = counter + 1

}

cetak("Hasil faktorial tina 7 nyaeta:")

cetak(hasil) # Kaluaran kedahna 5040 (Output should be 5040)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Conto optimasi

Interpreter kedah ngaoptimalkeun 'hasil * 1' janten 'hasil'

sareng 'counter + 0' janten 'counter'.

optimasi = hasil * 1 + 0

cetak("Hasil saatos optimasi (kedah sami):")

cetak(optimasi)

TABLE 3

Comparison of Evaluator Performance.

Greedy
Optimizer

DP
Evaluator

Final AST
Cost

DP Cache
Hits

DP Hit
Rate

Enabled Enabled 432 9 13.64%

Disabled Enabled 445 9 12.86%

Enabled Disabled 432 0 0.00%

Disabled Disabled 445 0 0.00%

The results in Table III illustrate the distinct and
complementary benefits of each algorithmic stage.

1. Static Optimization Impact

Comparing rows where the optimizer is enabled versus
disabled (e.g., row 1 vs. 2), the `Final AST Cost` consistently
drops from 445 to 432. This demonstrates the static cost
reduction provided by the GBFS optimizer, regardless of the
runtime evaluation method.

2. Runtime Evaluation Impact

Comparing rows where the evaluator is enabled versus
disabled (e.g., row 1 vs. 3), the `DP Cache Hits` metric is non-
zero only when the DP system is active. This confirms that the
memoization system provides a runtime performance benefit by
caching results, a feature that static optimization alone cannot
provide.

The most performant configuration is when both systems are
enabled, benefiting from both the reduced computational
complexity of the optimized AST and the runtime efficiency of
the memoized evaluator.

VI. CONCLUSION

This study successfully developed and validated an
interpreter for a custom, Sundanese-inspired language, centered
on a multi-stage pipeline that integrates a Greedy Best-First
Search (GBFS) optimizer with a Dynamic Programming (DP)
evaluator. By leveraging GBFS for static pre-execution
optimization and DP for memoized runtime evaluation, the
system effectively enhances computational efficiency from two
distinct perspectives.

The experimental results demonstrate the system's ability to
significantly improve performance through this dual-strategy
approach. The heuristic optimizer was shown to successfully
reduce the Abstract Syntax Tree's computational cost by 32.6%
in targeted tests, while the memoized evaluator achieved a

notable cache hit rate, confirming its success in eliminating
redundant calculations during program execution. The
combined analysis verified that the most performant
configuration is achieved when both systems are active,
highlighting the complementary benefits of static analysis and
dynamic optimization.

While the interpreter successfully serves as a proof-of-
concept, future work could focus on expanding the language's
feature set by implementing more complex data structures and
user-defined functions, which would necessitate a more
advanced, scope-aware DP evaluator. Overall, the integration of
heuristic search and dynamic programming presents a robust and
effective methodology for advancing the design of modern
interpreters.

VIDEO LINK AT YOUTUBE

A detailed walkthrough of the paper is available on
YouTube. Watch the video here:
https://youtu.be/fOVk7zWDVoU

CODE REPOSITORY

The source code for the implementation discussed in this
paper is available at the following GitHub repository:
https://github.com/l0stplains/Nyunda

ACKNOWLEDGMENT

First and foremost, I am profoundly grateful to God for His
unwavering guidance and support, which has been the
cornerstone of this project’s completion. I would like to extend
my deepest appreciation to my lecturer, Nur Ulfa Maulidevi, for
her exceptional insights and dedicated mentorship throughout
this semester. I am also indebted to Rinaldi Munir for his
valuable encouragement and “good news” in every task he gave.

My heartfelt thanks go to my family and friends, whose
steadfast encouragement and understanding, especially during
the hectic end-of-semester period, provided the emotional
strength needed to overcome challenges and reach our
objectives. Their support has been instrumental in bringing this
work to fruition.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed, Pearson, 2006

[2] Y. Wibisono and M. L. Khodra, Modul Praktikum Pengantar Regular
Expression. Google Docs, Apr. 11, 2020. Creative Commons. [Online].
Available: https://docs.google.com/document/d/1ls6h1A6m-
Zhzw6e5eriwMNUAG0D1iwL-eVmVMS2XQoc/edit?usp=sharing.
Accessed: Jun. 20, 2025.

[3] N. U. Maulidevi, Penentuan Rute (Route/Path Planning) (Bagian 1: BFS,
DFS, UCS, Greedy Best First Search), Lecture Notes for IF2211 Strategi
Algoritma, Program Studi Teknik Informatika, Sekolah Teknik Elektro
dan Informatika ITB, 2025. [Online]. Available:

https://youtu.be/fOVk7zWDVoU
https://github.com/l0stplains/Nyunda
https://docs.google.com/document/d/1ls6h1A6m-Zhzw6e5eriwMNUAG0D1iwL-eVmVMS2XQoc/edit?usp=sharing
https://docs.google.com/document/d/1ls6h1A6m-Zhzw6e5eriwMNUAG0D1iwL-eVmVMS2XQoc/edit?usp=sharing

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-
Route-Planning-(2025)-Bagian1.pdf. Accessed: Jun. 20, 2025.

[4] R. Munir, Program Dinamis (Dynamic Programming) (Bagian 1), Bahan
Kuliah IF2211 Strategi Algoritma, Program Studi Teknik Informatika,
STEI-ITB, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf. Accessed: Jun. 20, 2025.

DECLARATION OF ORIGINALITY

I hereby declare that the paper I have written is entirely my

own work, and not a reproduction, adaptation, or translation of

another individual's work. Furthermore, I declare that this paper

is free from any form of plagiarism.

Bandung, 24 June 2025

Refki Alfarizi

13523002

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf

